3.7/3.8: Mass-Spring Summary
m = mass attached to end of spring
y =damping constant
k = spring constant
F(t) = external force function
u(t) = displacement from rest at time t
We derived that
mu' +yu' + ku = F(t)

We consider four situations:

In 3.7

Case 1: No damping, no forcing.
Case 2: Damping, no forcing.

In 3.8
Case 3: No damping, with forcing.
Case 4: Damping with forcing.

Case 1: F(t)=0andy =0
mu'’ +ku =0

mr? + k =0givesr = +./k/m i

Soln: u(t) = c; cos(wyt) + c,sin(wyt)

wo =+ k/m = natural freq.

R = /clz+c§ = amplitude.
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Case 2:F(t)=0andy >0
mu" +yu'+ku=0
2 .
mr +yr+k—0g1ves

)4
= — 4mk
4 Zm 2m \/]/ m

2a: y > 2v/mk, overdamped
Soln: u(t) = cyeftt + cyef2t

2b:y = 2/mk, critically damped
Soln: u(t) = cie'™ + c,te'™

2c: ¥ < 2vVmk, underdamped
_ _ Y 1 — 2
r= + — \/4mk yei

2m

Soln:u(t) = e*(cq cos(ut) + cysin(ut))
Y

2m

_ 1 — 2 |k _ 7

- m\/4mk Vo= \/m 4m?
= quasi-frequency

Note: Asy = 0, u = wy

, \/Av/\/ B




Case3:y =0, F(t) = Fycos(wt)
mu' + ku = Fycos(wt)
Homogeneous solution
c1 cos(wgt) + cysin(wyt)
General solution
u(t) = cq cos(wyt) + ¢, sin(wyt)

+ u, (t)
3a: If w # wy, then use 3b: If w = w,, then use |
u,(t) = Acos(wt) + B sin(wt) u,(t) = At cos(wt) + Bt sin(wt)
_ K :
__ K cos(wt) = T t sin(wt)

m(wi—w?)

7 ‘ A
- V/\\/\/
Aside: Picture is soln to : \}

u’’+16u = cos(5t), u(0)=0, u’(0)=0 " U
Resonance!




Case4: F(t) = Fycos(wt)andy >0 P

Sol'n: u(t) = uc(t) + u,(t)

u.(t) =homogeneous sol’n
= transient sol’'n

U, (t) =particular sol'n /\
= steady state sol’'n ' e

e

(also called forced response) \/

Example: The solution to

u" + 2u' + 5u = 10cos(t)
u(0) =6 and u’(0) =-11
looks like the solid graphed function in
the picture, the steady state solution is
the dotted solution.

Solution:

u(t) = e %(cy cos(2t) + c,sin(2t)) + 2cos(t) + sin(t)
= e~ (4 cos(2t) — 6sin(2t)) + 2cos(t) + sin(t)

A



Example: Same problem with much Some First Observations:
smaller damping: 1.When there is damping, thereis a
u"” + 0.1u’ 4+ 5u = 10cos(t) transient part of the solution that

always dies out.

T 2.1f damping is smaller, it takes longer
to die out.

‘ /\ [\,\ /\ /\ 3.The amplitude of the steady state
," V\/ \/ \/ \/ \/ solution dependents on m, y, k, and

Fo in some way.

Solution:

u(t) =e %95t (¢, cos(ut) + c,sin(ut)) + 2.4984cos(t) + 0.0624sin(t)




Studying Amplitude of Steady State Soln
Consider the example
u"” +yu' + 5u = 10cos(wt)

Homogenous Solution: Particular Solution:

The characteristic equation is Using: u,(t) = A cos(wt) + Bsin(wt)
r’+yr+5=0 we get

r=—L4-/y2-20 (5 — w2)A+ ywB = 10

—ywA + (5 — w?)B =0

If ¥ < V20 (underdamped), then
Y (u ped) So (through some algebra):

_1 —2_ |e_¥ B
p=5y20-y2= [5-% L 10(5 — w?)
And Note: wy = V5 w*+ (y* —10)w?* + 25

0 B = 10yw

w*+ (y? —10)w? + 25
as you can see it starts to get messy.

u(t) =e_%t(cl cos(ut) + cysin(ut)) + Acos(wt) + Bsin(wt)




Let’s look at the case when

= /5 Gt ”ﬂ
u”’ +yu' +a!)5u = iOcos(\/g t) Mﬂ {”\ f

10yV5 _2V5 JWWLMH

25+(y2_10)5+25_y I A A I A B I

thenA=0and B =

u,(t) = ¥ sin(V5t)

Some Second Observations:

14 R 1.1f the forcing frequency is close to the
10 0.447 natural frequency, then tend to get
1 4.47 large amplitude solutions.
0.1 44,72
0.01 447.21 2.In this case, the amplitude gets larger
0.001 4472.14 and larger the closer the damping is

to zero.



General Discussion

mu'' 4+ yu' + ku = F, cos(wt)

k k Y2
Note:w0=\/%,u=\/;—4mz

Particular Solution:
U, (t) = Acos(wt) + Bsin(wt)

Leads to
—ywA + (k —mw?)B =0
(k — mw?)A + ywB = F,

The formulas for A and B are large to
write out.

The amplitude of the steady state
solution simplifies to:

Fy
\/(k—mw2)2+y2w2

R = VA2 +B? =

Thinking of this as a function of w the
maximum steady state amplitude occurs
when:

_ |k ¥?
Wmax = \/__

m 2m?2

In particular, for small values of ¥y

. Fo .
if w = wy, thenR =~ y—z) is large.

(resonance)



